The Raspberry Pi Pico W is a microcontroller board that is based on the Raspberry Pi Pico, but with the addition of wireless connectivity features. Specifically, the Pico W includes built-in Wi-Fi and Bluetooth, which allows it to connect to the internet and communicate with other devices wirelessly.
The Pico W is powered by a dual-core Arm Cortex-M0+ processor, which runs at a speed of up to 133 MHz. It also includes 264KB of RAM and 2MB of flash memory, which can be used to store programs and data. Additionally, the board has a variety of input/output (I/O) pins, which can be used to connect to sensors, actuators, and other devices.
The Pico W can be programmed using a variety of programming languages and development environments, including MicroPython and C/C++. This makes it a flexible and versatile platform for a wide range of projects, including Internet of Things (IoT) devices, robotics, and more.
Here is one example how to use Raspberry Pi Pico W with micropython, one senzor connected via I2C and simple GUI on the android device using GUI-O via WiFi.
The described device is nearly matchbox-sized board (50 x 24 mm) packed with sensors. Auxilary board is 10x50mm with additional sensors. The module is developed around the Murata ABZ LoRa module, which integrates STM32L072 and samtech SX1276 in tiny 12.5 x 11.6 x 1.76 mm package. The main board is equipped with following sensors:
There are two 1Mbit EEPROMs on-board for local data logging. Additional pins are available for SPI, 2x UART and I2C interface, where even more sensors can be attached.
Our home vineyard delivers about 1000 liters of wine every year. It takes some effort to keep good quality and pleasure for all friends tasting the must, new wine and “senior” wine reserves. One of the most important tasks in wine quality management is controlling the biological and chemical state of the wine. The wine can be monitored in special laboratory or in home lab. Of course home lab become rational when quantity of the wine is high enough to justify expenses in special equipment. There is some low cost equipment available for wine analysis, mostly with titration techniques, but chemical lab equipment is rather expensive and many hobby wineries avoid buying such equipment. I hope this post can contribute a bit to change that. I will describe the development of simple pH meter in detail.